Voltage regulators with limited capacity power supply and Non-Euclidean geometry

Alexandr PENIN, Anatolie SIDORENKO
Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu"
of the Academy of Sciences of Moldova
aapenin@mail.ru; anatoli.sidorenko@kit.edu

Abstract

The restriction of load power, two-valued regulation characteristic, and interference of several loads is observed in power supply systems with limited power of voltage source. The approach for interpretation of changes or "kinematics" of load regimes is presented by using the conformal and hyperbolic plane. This geometrical interpretation allows to base the definition of operating regime parameters. Results can be useful for electric circuit theory education and for voltage coordinated control of given loads. Non-Euclidean geometry is a new mathematical apparatus in the electric circuit theory, adequately interprets "kinematics" of circuit, provides the validation for the introduction and definition of the proposed concepts. Index Terms - cross ratio, limited voltage source, projective transformations, regulated characteristics, stereographic projection.

I. INTRODUCTION

In power supply systems with limited voltage source power, the restriction of load power, two-valued regulation characteristic, and interference of several loads is observed [1]. Distributed power supply systems, autonomous or hybrid power supply systems on the basis of solar cells, fuel elements, and accumulators can be examples of such systems [2].

At present time, a digital control of voltage converters is used. One way of the digital control performance is a predictive technique. In one switching period, the duty cycle for the next switching cycle is calculated, based on the sensed or observed state and the input/ output information [3], [4]. Also, a feed-forward control method improves a load regulation dynamics of converter [5].This method calculates the required duty ratio variation by the predicted load current. Therefore, it is necessary to take into account the internal resistance of power supply, to carry out analysis of the load interference and obtain relationships for definition of regime parameters at the possible coordinated predictive control for preset load regimes.

The approach for interpretation of changes or "kinematics" of load regimes is presented by using the conformal and hyperbolic plane [6]. In the present paper, the base of this approach is developed.

II. BASIC MODEL OF VOLTAGE REGULATORS. DISPLAY OF CONFORMAL GEOMETRY

We consider a power supply system with two idealized voltage regulators $V R_{1}, V R_{2}$, and loads R_{1}, R_{2} in Fig.1. The regulators define transformation ratios

$$
\begin{equation*}
n_{1}=\frac{V_{1}}{V}, n_{2}=\frac{V_{2}}{V} \tag{1}
\end{equation*}
$$

An interference of the regulators on load voltages V_{1}, V_{2} is observed by internal resistance R_{i}.

Fig. 1 Power supply system with two regulators and loads
The equation of this circuit at change of parameters n_{1}, n_{2} has the view

$$
\begin{equation*}
\frac{R_{i}}{R_{1}}\left(V_{1}\right)^{2}+\frac{R_{i}}{R_{1}}\left(V_{2}\right)^{2}+\left(V-\frac{V_{0}}{2}\right)^{2}=\frac{\left(V_{0}\right)^{2}}{4} \tag{2}
\end{equation*}
$$

This expression represents a sphere by coordinates in Fig.2. For simplification of drawing, the axes V_{1}, V_{2} are superposed. In turn, the variables n_{1}, n_{2} are resulted from a stereographic projection of sphere's points from the pole $0,0,0$ [7]. These variables define the conformal plane $n_{1} n_{2}$ [8].

In the plane $V_{1} V_{2}$ we have an area of voltage change. This area is defined by the internal area of circle (ellipse) and corresponds to the sphere's equator in Fig.3(a). In this case $V=V_{0} / 2$. Taking into account (2), we obtain the equation of this circle

$$
\begin{equation*}
\frac{R_{i}}{R_{1}}\left(V_{1}\right)^{2}+\frac{R_{i}}{R_{2}}\left(V_{2}\right)^{2}=\frac{\left(V_{0}\right)^{2}}{4} \tag{3}
\end{equation*}
$$

Fig. 2 Stereographic projection of sphere's points $V\left(V_{1}, V_{2}\right)$ on the plane $n_{1} n_{2}$

In the plane $n_{1} n_{2}$ this equation has the form

$$
\begin{equation*}
\frac{R_{i}}{R_{1}}\left(n_{1}\right)^{2}+\frac{R_{i}}{R_{2}}\left(n_{2}\right)^{2}=1 \tag{4}
\end{equation*}
$$

Then, the maximum load voltages and transformation ratios

$$
\begin{align*}
V_{1 M} & = \pm \frac{V_{0}}{2} \sqrt{\frac{R_{1}}{R_{i}}}, \quad V_{2 M}= \pm \frac{V_{0}}{2} \sqrt{\frac{R_{2}}{R_{i}}} \tag{5}\\
n_{1 M} & = \pm \sqrt{\frac{R_{1}}{R_{i}}}, \quad n_{2 M}= \pm \sqrt{\frac{R_{2}}{R_{i}}} \tag{6}
\end{align*}
$$

Let, for example, the regime $V_{1}=$ const (there are lines L_{1}) be supported at the expense of n_{1}, n_{2} changes.
Then, the circular section L_{1} of sphere and corresponding circle L_{1} in the plane $n_{1} n_{2}$ turn out. Let us obtain the equation of this circle L_{1}. Taking into account (1)

$$
\left(V_{1}\right)^{2}=\left(n_{1}\right)^{2} V^{2},\left(V_{2}\right)^{2}=\left(n_{2}\right)^{2} V^{2}
$$

Then, by (2)

$$
\begin{equation*}
V=\frac{V_{0}}{1+\frac{R_{i}}{R_{1}}\left(n_{1}\right)^{2}+\frac{R_{i}}{R_{2}}\left(n_{2}\right)^{2}} \tag{7}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
V_{1}=\frac{n_{1} V_{0}}{1+\frac{R_{i}}{R_{1}}\left(n_{1}\right)^{2}+\frac{R_{i}}{R_{2}}\left(n_{2}\right)^{2}} \tag{8}
\end{equation*}
$$

Thus, the equation of circle L_{1} has the view

$$
\begin{equation*}
\frac{R_{i}}{R_{2}}\left(n_{2}\right)^{2}+\frac{R_{i}}{R_{1}}\left(n_{1}\right)^{2}-n_{1} \frac{V_{0}}{V_{1}}+1=0 \tag{9}
\end{equation*}
$$

Points of intersection of the circle L_{1} with the axis n_{1} correspond to equation (9) as $n_{2}=0$. Then

$$
\begin{equation*}
\left(n_{1}\right)^{2}-n_{1} \frac{R_{1}}{R_{i}} \frac{V_{0}}{V_{1}}+\frac{R_{1}}{R_{i}}=0 \tag{10}
\end{equation*}
$$

Therefore, in the plane $n_{1} n_{2}$ the circles correspond to the parallel straight lines of the plane $V_{1} V_{2}$ for different values V_{1}.

a)

b)

Fig. 3 Correspondence the plane $V_{1} V_{2}-$ (a) to the conformal plane $n_{1} n_{2}-(\mathrm{b})$ for $V_{1}=$ const

Such family of circles describes the regime $V_{1}=$ const as a rotation group of sphere in Figs.2, 4. This motion of points $n^{1} \rightarrow n^{2}$ has the two fixed points $\pm n_{1 M}$.
Let the set of initial points be situated on sphere's equator for different values V_{1}. The rotation of the equatorial plane of sphere about its diameter, as shown by arrows in Fig.2, gives the circle family K_{1} with parameters k_{2}^{1}, k_{2}^{2}, and so on in Figs.3,4.
In turn, in the plane $V_{1} V_{2}$ the projected circles k_{2}^{1}, k_{2}^{2} give the family of ellipses K_{1}, as shown in Fig.3(a). By Fig.5(a), we have

$$
\begin{equation*}
V_{2}=k_{2}\left(V-\frac{V_{0}}{2}\right)=n_{2} V \tag{11}
\end{equation*}
$$

where k_{2} is an angular coefficient. Therefore, we get

$$
\begin{equation*}
\frac{R_{i}}{R_{1}}\left(V_{1}\right)^{2}+\left(\frac{R_{i}}{R_{2}}+\frac{1}{\left(k_{2}\right)^{2}}\right)\left(V_{2}\right)^{2}=\frac{\left(V_{0}\right)^{2}}{4} \tag{12}
\end{equation*}
$$

Fig. 4 Regime $V_{1}=$ const as the rotation group of sphere
Next, we obtain the equation of corresponding circles in the plane $n_{1} n_{2}$. From (11) it is follows

$$
\frac{V_{0}}{V}=2 \frac{k_{2}-n_{2}}{k_{2}}
$$

Using (7), we get the required equation of circle K_{1}

$$
\begin{equation*}
\frac{R_{i}}{R_{2}}\left(n_{2}\right)^{2}+\frac{R_{i}}{R_{1}}\left(n_{1}\right)^{2}+2 \frac{n_{2}}{k_{2}}-1=0 \tag{13}
\end{equation*}
$$

The moving of points of circles K_{1} is shown in Fig.5(b). Such moving, as a hyperbolic transformation with the two fixed points $\pm n_{1 M}$, has form (5).
On some step of switching cycle at an increase of parameters n_{1}, n_{2}, a running point can pass over the equator and the voltage V_{2} is going on step down that is inadmissible. Therefore, it is better to use such groups of transformations or movements of points in the plane $n_{1} n_{2}$, when it is impossible to move out the running point over the circle or equator of sphere. So, we must decrease the next values n_{1}, n_{2} by some rule. In this sense, we come at hyperbolic geometry [9]. There is Poincare's model in the plane $n_{1} n_{2}$. The corresponding circle carries the name of absolute and defines infinitely remote border. The equation of absolute conforms to (4). The arcs of circles L_{1} are the straight lines of this model. In turn, the arcs of circles K_{1} are the lines. A distance between these lines is constant. The straight lines L_{1} are orthogonal to equidistance lines K_{1}.
In turn, the Beltrami- Klein model is other hyperbolic geometry model in the plane $V_{1} V_{2}$ in Fig.3(a). The lines L_{1}, K_{1} of this model have the same sense.
Now, we can obtain requirement expressions or rules of regime parameters and their changes.

Fig. 5 Circle family K_{1} with parameters k_{2}^{1}, k_{2}^{2}; rotation of the equatorial plane of sphere about its diameter in the coordinate plane $V, V_{2}-(\mathrm{a})$, moving of points of circles $K_{1}-(\mathrm{b})$

III. CASE OF ONE LOAD

We consider our power supply system with one load, as $n_{2}=0, V_{2}=0$. Thus, a regime change goes only on the axes V_{1}, n_{1}. Points of initial n_{1}^{1} and subsequent n_{1}^{2} regime form a segment $n_{1}^{1} n_{1}^{2}$. A moving of this segment for different initial points and the conformity of variables n_{1}, V_{1} are shown in Fig.6. It is obvious that Euclidean length of segment $n_{1}^{1} n_{1}^{2}$ decrease, while this segment approaches to the fixed points $\pm n_{1 M}$ of absolute. But, a projective transformation has an invariant in the form of cross ratio for four points [10], [11]. In the given case, there are the two fixed points, as base points, the point of initial n_{1}^{1}, and subsequent n_{1}^{2} regime. Then, the cross ratio m_{n}^{21}, which corresponds to a regime change, has the form
$m_{n}^{21}=\left(-n_{1 M} n_{1}^{2} n_{1}^{1} n_{1 M}\right)=\frac{n_{1}^{2}+n_{1 M}}{n_{1 M}-n_{1}^{2}} \div \frac{n_{1}^{1}+n_{1 M}}{n_{1 M}-n_{1}^{1}}$.
The value of this cross ratio is constant for different initial points, as it is shown in Fig.6. The cross ratio m_{n}^{1} for the initial regime n_{1}^{1} relatively to $n_{1}=0$

$$
\begin{equation*}
m_{n}^{1}=\left(-n_{1 M} n_{1}^{1} 0 n_{1 M}\right)=\frac{n_{1}^{1}+n_{1 M}}{n_{1 M}-n_{1}^{1}} \tag{15}
\end{equation*}
$$

Fig. 6 Moving of segment for variables V_{1}, n_{1}

The value m_{n}^{1} determines a non-uniform projective coordinate of the value n_{1}^{1}. Hence, the point $n_{1}=0$ is a unite point. In the same way, for subsequent regime n_{1}^{2}

$$
\begin{equation*}
m_{n}^{2}=\left(-n_{1 M} n_{1}^{2} 0 n_{1 M}\right)=\frac{n_{1}^{2}+n_{1 M}}{n_{1 M}-n_{1}^{2}} \tag{16}
\end{equation*}
$$

Let us obtain the expression of transformation $n_{1}^{1} \rightarrow n_{1}^{2}$. Using normalized values, we get (14) in the form

$$
\begin{equation*}
m_{n}^{21}=\left(-1 \bar{n}_{1}^{2} \bar{n}_{1}^{1} 1\right)=\frac{\bar{n}_{1}^{2}+1}{1-\bar{n}_{1}^{2}} \div \frac{\bar{n}_{1}^{1}+1}{1-\bar{n}_{1}^{1}} \tag{17}
\end{equation*}
$$

Then, the subsequent value

$$
\begin{equation*}
\bar{n}_{1}^{2}=\left(\bar{n}_{1}^{1}+\frac{m_{n}^{21}-1}{m_{n}^{21}+1}\right) \div\left(1+\bar{n}_{1}^{1} \frac{m_{n}^{21}-1}{m_{n}^{21}+1}\right) \tag{18}
\end{equation*}
$$

We can introduce the value $n_{1}^{21}=\frac{m_{n}^{21}-1}{m_{n}^{21}+1}$.
Finally we obtain

$$
\begin{equation*}
\bar{n}_{1}^{2}=\frac{\bar{n}_{1}^{1}+n_{1}^{21}}{1+\bar{n}_{1}^{1} n_{1}^{21}}, n_{1}^{21}=\frac{\bar{n}_{1}^{2}-\bar{n}_{1}^{1}}{1-\bar{n}_{1}^{2} \bar{n}_{1}^{1}} \tag{19}
\end{equation*}
$$

There is the required property of this transformation. If the initial value $\bar{n}_{1}^{1}=1$, then the subsequent value $\bar{n}_{1}^{2}=1$ for various values n_{1}^{21}. Therefore, there is a strong reason to introduce the value of transformation ratio change as n_{1}^{21}.

Let us now consider the variable V_{1}. Similarly to (15), (16), the cross ratios
$m_{V}^{1}=\left(-V_{1 M} V_{1}^{1} 0 V_{1 M}\right)=\frac{V_{1}^{1}+V_{1 M}}{V_{1 M}-V_{1}^{1}}, m_{V}^{2}=\frac{V_{1}^{2}+V_{1 M}}{V_{1 M}-V_{1}^{2}}$.
Using normalized values, similarly to (19), we get

$$
\bar{V}_{1}^{2}=\frac{\bar{V}_{1}^{1}+V_{1}^{21}}{1+\bar{V}_{1}^{1} V_{1}^{21}}, \quad V_{1}^{21}=\frac{\bar{V}_{1}^{2}-\bar{V}_{1}^{1}}{1-\bar{V}_{1}^{2} \bar{V}_{1}^{1}}
$$

Thus, there is a strong reason to introduce the value of voltage change as V_{1}^{21}.

IV. CONCLUSION

Geometrical interpretation allows basing the definition of operating regime parameters. The concrete kind of circuit and character of regime determines system parameters; arbitrary expressions are excluded.
Obtained expressions are generalized for two or more loads. From the methodological point, the presented approach is applied for a long time in other scientific domains, as mechanics, biology.

REFERENCES

[1] D. Yahia et al., "Deliverable-power dependence on distribution-line resistance and number of loads in low-voltage DC distribution system," IEEJ Trans. Electrical and Electronic Engineering, No.7, pp. 2330, 2012.
[2] X. Lui, P. Wang, and P. Loh, "A Hybrid AC/ DC Micro grid and its coordination control," IEEE Trans. Smart Grid, Vol. 2, No. 2, pp. 278-286, 2011.
[3] J. Chen, et al., "Predictive Digital Current Programmed Control," IEEE Trans. Power Electronics, Vol. 18, No. 1, pp. 411-419, 2003.
[4] S. Chattopadhyay and S. Das, "A Digital currentmode control technique for DC-DC converters," IEEE Trans. Power Electronics, Vol. 21 No. 6, pp. 1718-1726, 2006.
[5] S. Chae, et al., "Digital predictive feed-forward controller for a DC-DC converter in plasma display panel," IEEE Trans. Power Electronics, Vol. 23 No. 2, pp. 627-634, 2008.
[6] A. Penin, "Analysis of regimes of voltage regulators with limited capacity voltage sources. Geometrical approach," WSEAS Trans. Circuits and Systems, Issue 1, Vol. 12, 2013.
http://www.wseas.org/multimedia/journals/circuits/201 3/55-251.pdf
[7] Encyclopedia Wikipedia "Stereographic projection," A http://en.wikipedia.org/wiki/Stereographic_projection
[8] Encyclopedia Wikipedia "Conformal geometry," http://en.wikipedia.org/wiki/Conformal_geometry
[9] Encyclopedia Wikipedia "Hyperbolic geometry", http://en.wikipedia.org/wiki/Hyperbolic_geometry
[10] Jr. A. Frank, Schaum's outline of theory and problems of projective geometry, McGraw-Hill, 1967.
[11] A. Penin, "Projective geometry method in the theory of electric circuits with variable parameters of elements," International Journal of Electronics Communications and Electrical Engineering, Issue 2, Vol. 3 pp. 18-34, 2013.
http://www.ijecee.com/uploads/displayVolumeIssue/V -3-I-2-ID-2.pdf

