Динамика туннелирования бозе–конденсированных атомов в двухямной ловушке

П.И. Хаджи^{1,2}, О.Ф. Васильева²

¹Институт прикладной физики АНМ, Молдова, Кишинев, Академией, 5 ²Приднестровский государственный университет имени Т.Г. Шевченко, Молдова, Тирасполь, ул. 25 Октября, 128 e-mail: florina of@mail.ru

Abstract — Изучена динамика туннелирования бозе-конденсированных атомов в двухямной ловушке с учетом процессов линейного одноатомного и нелинейного парного туннелирования через барьер между ямами. Решения полученной системы нелинейных эволюционных уравнений, описывающих нестационарное туннелирование, показывают, что существуют как периодический, так и апериодический режимы эволюции разности населенностей ям. Особенности временной эволюции системы определяются начальной разностью населенностей и начальной разностью фаз. Указано на возможность существования явления квантового самозахвата и фазового управления динамикой системы.

Index Terms – бозе-конденсированные атомы, двухямная ловушка, квантовый самозахват, фазовое управление динамикой системы ...

Nanoscience and nanotechnology

I. ВВЕДЕНИЕ

Явление туннелирования материальных частиц через классически непроницаемый барьер является одним из фундаментальных квантовых эффектов. Модель двойной квантовой ямы с центральным барьером оказалась весьма плодотворной при исследовании явления туннелирования бозе-конденсированных атомов. Туннельная связь между ямами возникает благодаря перекрытию волновых функций каждого конденсата в области барьера. Если ловушка состоит из двух потенциальных ям, разделенных барьером, то благодаря туннелированию атомов через барьер осциллирующий поток атомов возникает И осцилляции населенностей ям (подобно когерентному туннелированию куперовских пар через джозефсоновский переход). При низкой плотности атомов, когда непинейность. обусловленная межатомным взаимодействием, мала, то атомы, локализованные вначале в одной яме, полностью переходят в другую яму и осциллируют туда и обратно между ямами. Если нелинейность превосходит пороговую величину, то оспилляции населенностей становятся неполными и возникает явление квантового самозахвата. Таким образом, в симметричной двухямной структуре возникает асимметричное распределение атомов в ямах, так как большая часть атомов захватывается в одной из ям даже в условиях отталкивательного взаимодействия между атомами. Осцилляции плотности бозе-конденсированных атомов И явление самозахвата экспериментально наблюдались в [1]. Теоретически динамика туннелирования бозе-конденсированных атомов через барьер в двухямной ловушке была изучена в ряде работ [2-6].

Отметим, что во всех указанных работах [7-27] отсутствуют результаты исследований временной эволюции системы при учете процессов коллективного нелинейного туннелирования наряду процессом линейного одноатомного с туннелирования. Учет процесса парного туннелирования может привести к радикальному динамики туннелирования. Поэтому изменению исследование особенностей временной эволюции одновременном системы при vчете обоих механизмов туннелирования является актуальной задачей. Результаты таких исследований представлены ниже.

II. ПОСТАНОВКА ЗАДАЧИ. ОСНОВНЫЕ РЕЗУЛЬТАТЫ.

Изучим явление туннелирования бозеконденсированных атомов в двухямной ловушке между идентичными ямами. Ямы разделены допускает потенциальным барьером, который возможность их туннелирования из одной ямы в другую. Будем считать, что имеют место как одноатомный, так и корреляционный двухатомный туннелирования, процессы которые характеризуются константами K И μ соответственно. Цель этой работы состоит в

исследовании принципиальной роли обоих механизмов туннелирования без учета других нелинейностей. Тогда гамильтониан взаимодействия, в соответствии с [9-19], можно записать в виде:

$$H = \hbar \kappa (\hat{a}_{1}^{+} \hat{a}_{2} + \hat{a}_{2}^{+} \hat{a}_{1}) + \hbar \mu (\hat{a}_{1}^{+} \hat{a}_{1}^{+} \hat{a}_{2} \hat{a}_{2} + \hat{a}_{2}^{+} \hat{a}_{1}^{+} \hat{a}_{1} \hat{a}_{1}).$$
(1)
Здесь $\hat{a}_{i} (i = 1, 2)$ – оператор уничтожения

атома в яме *i*. Используя гамильтониан (1), легко получить систему гайзенберговских уравнений для операторов \hat{a}_1 и \hat{a}_2 , которая в приближении среднего поля (mean field approximation [28]) примет вид:

$$i\dot{a}_1 = \kappa a_2 + 2\mu a_1^* a_2 a_2, \ i\dot{a}_2 = \kappa a_1 + 2\mu a_2^* a_1 a_1,$$
 (2)

где a_1 и a_2 теперь являются амплитудами состояний атомов в ямах 1 и 2 соответственно, зависящими от времени. Систему уравнений (2) следует дополнить начальными условиями, которые можно записать в виде:

$$a_{1|t=0} = \sqrt{n_{10}} \exp(i\varphi_{10}), \ a_{2|t=0} = \sqrt{n_{20}} \exp(i\varphi_{20}), \tag{3}$$

где каждая из функций характеризуется своей начальной амплитудой (плотностью) и фазой.

Найдем решение уравнений (2) при учете линейных и нелинейных слагаемых. Для этого далее введем в рассмотрение плотности частиц в ямах $n_i = |a_i|^2$ (i = 1,2) и две компоненты «поляризации» $Q = i(a_1^*a_2 - a_2^*a_1)$ и $R = a_1^*a_2 + a_2^*a_1$. Используя (2), приходим к следующей системе нелинейных дифференциальных уравнений для них $\dot{n} = -\dot{n} = -(\kappa + 2\mu R)O$

$$\dot{Q} = 2\kappa(n_1 - n_2) + 2\mu(n_1 - n_2)R$$

$$\dot{R} = 2\mu(n_1 - n_2)Q. \qquad (4)$$

Используя (3), можно представить начальные условия для введенных функций в виде: n = n $n = n_{exc}$ $Q_{exc} \equiv Q_{exc} = 2\sqrt{n_{exc}n_{exc}} \sin \psi_{exc}$,

Из (4) легко получить интеграл движения: $n_1 + n_2 = n_{10} + n_{20} \equiv N_0$, который выражает собой закон сохранения полного числа атомов N_0 в системе. Вводя далее разность населенностей ям $n = n_1 - n_2$ с начальным условием $n_{|r=0} \equiv n_0 = n_{10} - n_{20}$, систему уравнений (5) можно записать в виде:

$$\dot{n} = -2(\kappa + 2\mu R)Q$$
, $\dot{Q} = 2n(\kappa + \mu R)$, $\dot{R} = 2\mu nQ$. (7)
Из (7) легко получить еще два независимых

интеграла движения $O^2 + R^2 + n^2 = N^2$ (9)

$$Q + K + n = N_0, \tag{8}$$

$$n^{2} + 2R\left(R + \frac{\kappa}{\mu}\right) = n_{0}^{2} + 2R_{0}\left(R_{0} + \frac{\kappa}{\mu}\right).$$
(9)

В общем случае ($\kappa \neq 0, \mu \neq 0$) не удается сразу получить решение для разности населенностей n(t). Вместо этого удобнее сначала найти решение уравнения

$$\frac{dR}{dt} = \pm 2\mu \sqrt{n_0^2 + 2R_0 \left(R_0 + \frac{\kappa}{\mu}\right) - 2R\left(R + \frac{\kappa}{\mu}\right)} \times \sqrt{N_0^2 - n_0^2 - 2R_0 \left(R_0 + \frac{\kappa}{\mu}\right) + R\left(R + 2\frac{\kappa}{\mu}\right)}$$
(10)

для функции R(t), а затем, используя (9), найти n(t).

Положим $R = N_0 y$, $\tau = \kappa t$ и введем параметры $\alpha = \kappa / (\mu N_0)$ и $\beta = n_0 / N_0$.

В общем случае вид решения уравнения (10) определяется параметрами α , β и ψ_0 . Если уравнение (10)представить в виде $(dR/dt)^2 + W(R) = 0$, где W(R)играет роль потенциальной энергии нелинейного осциллятора, то корни уравнения W(R) = 0 определяют характер поведения функции R(t). В нашем случае мы упорядочиваем корни следующим образом: $y_M > y_m > y_1 > y_-$, где

$$y_{M} = \frac{1}{2} \left(\sqrt{(\alpha + 2r_{0})^{2} + 2\beta^{2}} - \alpha \right), \quad y_{-} = -y_{M} - \alpha,$$

$$y_{m} = \sqrt{\alpha^{2} + \beta^{2} + 2r_{0}(r_{0} + \alpha) - 1} - \alpha, \quad y_{1} = -y_{m} - 2\alpha, \quad (11)$$

а $r_{0} = \sqrt{1 - \beta^{2}} \cos \psi_{0}.$ Поскольку эти параметры
зависят от ψ_{0} , то временная эволюция разности
населенности $n(t)$ существенно будет определяться
значением начальной разности фаз $\psi_{0}.$

Приведем решения только для разности населенности в различных случаях. При $\alpha > 1 - r_0 - \beta^2 / (2(1 + r_0))$ получаем

$$n = \sqrt{2} N_0 (y_M - y_-) \sqrt{(y_M - y_m)(y_m - y_-)} \times \frac{cnx}{y_m - y_- + (y_M - y_m)cn^2 x},$$
(12)
Fige

$$x = \frac{\sqrt{2}}{\alpha} \sqrt{(y_{M} - y_{-})(y_{m} - y_{1})} \tau \pm F(\varphi_{0}, k),$$

$$k^{2} = \frac{(y_{M} - y_{m})(y_{-} - y_{1})}{(y_{M} - y_{-})(y_{m} - y_{1})},$$

$$\varphi_{0} = \arcsin \sqrt{\frac{(y_{M} - y_{-})(y_{0} - y_{m})}{(y_{M} - y_{m})(y_{0} - y_{-})}}, \qquad y_{0} = R_{0}/N_{0},$$

$$T = 2\sqrt{2}\alpha K(k)/\sqrt{(y_{M} - y_{-})(y_{m} - y_{1})}.$$
(13)

Если корни y_1 и y_- совпадают, т.е. если $\alpha = 1 - r_0 - \beta^2 / (2(1 + r_0)),$ то решение принимает вид: $n = \sqrt{2} N_0 (y_M - y_-) \sqrt{(y_M - y_m)(y_m - y_-)} \times \frac{\cos x}{y_m - y_- + (y_M - y_m)\cos^2 x},$ (14)

где

$$x = \frac{\sqrt{2}}{\alpha} \sqrt{(y_{M} - y_{-})(y_{m} - y_{1})} \tau \pm \varphi_{0}.$$
(15)
Если же
 $\sqrt{1 - \beta^{2} - r_{c}^{2}} - r_{c} \le \alpha \le 1 - r_{c} - \beta^{2} / (2(1 + r_{c}))$

$$\beta^{2} + r_{0}^{2} < 1, \text{ TO}$$

$$n = \sqrt{2}N_{0}(y_{11} - y_{1})\sqrt{(y_{11} - y_{1})(y_{1} - y_{1})} \times$$

×
$$\frac{cnx}{y_m - y_1 + (y_M - y_m)cn^2x}$$
, (16)

$$x = \frac{\sqrt{2}}{\alpha} \sqrt{(y_{M} - y_{1})(y_{m} - y_{-})} \tau \pm F(\varphi_{0}, k),$$

$$k^{2} = \frac{(y_{M} - y_{m})(y_{1} - y_{-})}{(y_{M} - y_{1})(y_{m} - y_{-})},$$

$$\varphi_{0} = \arcsin \sqrt{\frac{(y_{M} - y_{1})(y_{0} - y_{m})}{(y_{M} - y_{m})(y_{0} - y_{1})}},$$

$$T = 2\sqrt{2}\alpha K(k) / \sqrt{(y_{M} - y_{m})(y_{m} - y_{1})}.$$
(17)

Наконец, если $\alpha^2 + \beta^2 + 2r_0(r_0 + \alpha) < 1$, то решение для функции $y(\tau)$ по-прежнему определяется формулой (18), где $v = \sqrt{1 - \alpha^2 - \beta^2 + 2r_0(r_0 + \alpha)}$.

$$y = \frac{(y_{-}n' - y_{M}n'')cn\left(\pm \frac{2\sqrt{2}}{\alpha}m\tau + F(\varphi_{0},k)\right) + y_{-}n' + y_{M}n''}{(n' - n'')cn\left(\pm \frac{2\sqrt{2}}{\alpha}m\tau + F(\varphi_{0},k)\right) + n' + n''}$$
$$n' = \sqrt{y_{-}^{2} + v^{2}}, \qquad n'' = \sqrt{y_{M}^{2} + v^{2}},$$
$$m = \sqrt[4]{(y_{M}y_{-} + v^{2}) + (y_{M}^{2} - y_{-}^{2})v^{2}}, (18)$$

а модуль k и параметр φ_0 в (18) определяются выражениями

$$k^{2} = \frac{1}{2} \left(1 - \frac{y_{M} y_{-} + v^{2}}{\sqrt{(y_{M} y_{-} + v^{2})^{2} + (y_{M} - y_{-})^{2} v^{2}}} \right),$$

$$\cos \varphi_{0} = \frac{y_{M} n'' + y_{-} n'}{y_{M} n'' - y_{-} n'}.$$
(19)

Разность населенностей является осциллирующей функцией от времени, период T и амплитуда A определяются выражениями

$$T = \sqrt{2}\alpha K(k)/m, \ A = y_{M} - y_{-} = \sqrt{\alpha^{2} + 2\beta^{2}}.$$
 (20)

На рис. 1*а* представлена временная эволюция разности населенностей атомов в ямах при различных значениях начальной разности фаз ψ_0 . Видно, что существуют области значений параметра ψ_0 в пределах от нуля до 2π с различной периодической эволюцией, разделенные значениями ψ_0 , при которых периодическая эволюция переходит в апериодическую. Вблизи значений ψ_0 , где имеет место апериодическая эволюция, период колебаний Т быстро растет и обращается В бесконечность. Количество бифуркаций и значений параметра ψ_0 , при которых возникает апериодическая эволюция, определяется значениями параметров α и β . На рис. 2 представлена зависимость периода колебаний от начальной разности фаз ψ_0 . Из рис. 2 можно заметить симметрию в расположении особенностей временной эволюции и периодов эволюции относительно точки $\psi_0 = \pi$, так что $n(\boldsymbol{\psi}_{0}) = n(2\pi - \boldsymbol{\psi}_{0}).$

Самой важной бифуркацией здесь является равенство двух средних корней: $y_m = y_1$. При значениях параметров, когда $y_{m} = y_{1}$, лва действительных корня уравнения W(R) = 0 превращаются В комплексно сопряженные. В условиях, когда $y_m > y_1$, решение уравнения (10) является осциллирующим и функция $y(\tau)$ колеблется в пределах от y_m до y_M , так что амплитуда колебаний функции $y(\tau)$ равна $y_M - y_m$.

Рис.1. Временная эволюция разности населенностей *n* в зависимости от начальной разности фаз ψ_0 при фиксированных значениях параметров $\alpha = 0.8$ и β *a*) 0.1 и *b*) 0.8. Здесь

$$\tau = \kappa t$$

Если же параметры системы изменяются таким образом, что $y_m = y_1$, то в этом случае возникают два комплексно – сопряженных корня и эволюция функции $y(\tau)$ происходит уже в пределах от $y_{_}$ до $y_{_M}$ с амплитудой $y_{_M}-y_{_},$ которая больше амплитуды $y_{M} - y_{m}$. Следовательно, при $y_{m} = y_{1}$ происходит скачкообразное изменение амплитуды колебаний при изменении параметров системы. Такой скачок свидетельствует о существовании явления самозахвата. При этом период колебаний функции $y(\tau)$ обращается в бесконечность при $y_m = y_1$. Вдали от точки бифуркации период колебаний монотонно изменяется. Таким образом, можно утверждать, что по мере приближения корней у_т и у₁ друг к другу период колебаний монотонно растет. В точке бифуркации решение для $y(\tau)$ становится апериодическим.

III. ЗАКЛЮЧЕНИЕ.

Таким образом, благодаря линейному процессу туннелирования имеет место периодический перенос из одной ямы в другую и

Рис.2. Период *T* колебаний разности населенностей *n* в зависимости от начальной разности фаз ψ_0 и фиксированных значениях параметра нелинейности $\alpha = 0.8$ и нескольких значениях параметра $\beta : 1 (0.1), 2 (0.5), 3 (0.8), 4$

(0.9). Здесь $T_0 = \pi/\kappa$.

Период туннелирования обратно. при ЭТОМ определяется только константой к и не зависит от начальных условий. При учете слагаемого, описывающего процесс нелинейного, парного туннелирования, имеет место как периодический, так И апериодический режимы эволюции населенностей ям, причем период колебаний плотности атомов в ямах существенно зависит от условий (начальной начальных разности населенностей ям и разности фаз). Зависимость периода колебаний от начальной разности фаз возможности свидетельствует 0 фазового управления динамикой системы без изменения начальной разности населенностей. В частности, в условиях начальной равнозаселенности обеих ям колебания плотности атомов в ямах возникают только благодаря начальной разности фаз. В условиях действия механизма парного нелинейного туннелирования также возможно проявление эффекта квантового самозахвата, однако это проявление не столь яркое, как в случае учета упругого межатомного взаимодействия [2-6, 29].

IV. ЛИТЕРАТУРА.

[1] Albiez M., Gati R., Fölling J., Hunsmann S., Cristiani M., Oberthaler M.K.// Phys. Rev. Lett. 2005. Vol. 98. pp. 010402.

[2] Milburn G.J., Corney J., Wright E.M., Walls D.F. // Phys. Rev. 1997. Vol. A55. pp. 4318.

[3] Smerzi A., Raghavan S. // Phys. Rev. 2000. Vol. A61. pp. 063601.

[4] Raghavan S., Smerzi A., Fantoni S., Shenoy S.R. // Phys. Rev. 1999. Vol. A59. pp. 620.

[5] Tsukada N. // Phys. Rev. 2001. Vol. A61. pp. 063602; 2001. Vol. A64. pp. 033601.

[6] Smerzi A., Trombettoni A. // Phys. Rev. 2003. Vol. A68. pp. 023613.

[7] Fölling S., Trotzky S., Cheinet P., Feld M., Saers R., Widera A., Müller T., Bloch I. // Nature. 2007. Vol. 448. pp. 1029.

[8] Zöllner S., Meyer H.-D., Schmelcher P. // Phys. Rev. 2006. Vol. A74. pp. 053612; Phys. Rev. 2008.
Vol. A78. pp. 013629; Phys. Rev. Lett. 2008. Vol. 100. pp. 040401.

[9] Liang J.–Q., Liu J.–L., Li W.–D., Li Z.–J. // Phys. Rev. 2009 Vol. A79. pp. 033617.

[10] Liu J. –L., Liang J.–Q. //J. Phys. B: At. Mol. Opt. Phys. 2011. Vol. 44. pp. 025101.

[11] Pflanzer A.C., Zöllner S., Schmelcher P. // J. Phys.B: At. Mol. Opt. Phys. 2009. Vol. 42. pp. 231002.

[12] Spekkens R.W., Sipe J.E. // Phys. Rev. 1999. Vol. A59. pp. 3868.

[13] Masiello D., McKagan S.B., Reinhardt W.P. // Phys. Rev. 2005. Vol. A72. pp. 063624.

[14] Ananikian D., Bergeman T. // Phys. Rev. 2006. Vol. A73. pp. 013604.

[15] Gati R., Oberthaler M.K. // J. Phys. B: At. Mol. Opt. Phys. 2007. Vol. 40. pp. R61.

[16] Mann R.B., Young M.B., Fuentes–Schuller I. // J. Phys. B: At. Mol. Opt. Phys. 2011. Vol. 44. pp. 085301.

[17] Fuentes–Schuller I., Barberis–Blostein P. // J. Phys. 2007. Vol. A40. pp. F601.

[18] Barberis–Blostein P., Fuentes–Schuller I. // Phys. Rev. 2008. Vol. A78. pp. 013641.

[19] Mahmud K.W., Perry H., Reinhardt W.P. // J. Phys. B: At. Mol. Opt. Phys. 2003. Vol. 36. pp. L265; Phys. Rev. 2005. Vol. A71. pp. 023615.

[20] Winkler K., Thalhammer G., Lang F., Grimm R., Denschlag J.H., Daley A.J., Kantian A., Büchler H.P., Zoller P. // Nature. 2006. Vol. 441. pp. 853.

[21] Swislocki T., Sowinski T., Pietruszewicz J., Brewczyk M., Lewenstein M., Zakrzewski J., Gajda M. // Phys. Rev. 2011. Vol. A83. pp. 063617.

[22] Jia X. Y., Li W.D., Liang J.Q. // Phys. Rev. 2008. Vol. A78. pp. 023613.

[23]. Fischer U.R, Lee K.–S., Xiong B. // Phys. Rev. 2011. Vol. A84. pp. 011604(R).

[24] Bader P., Fischer U.R. // Phys. Rev. Lett. 2009. Vol. 103. pp. 060402.

[25] Eckholt M., Garcia–Ripoll J.J. // Phys. Rev. 2008.Vol. A77. pp. 063603; New J. Phys. 2009. Vol. 11. pp. 093028.

[26] Zhou X.–F., Zhang Y.–S., Guo G.–C. // Phys. Rev. 2009. Vol. A80. pp. 013605.

[27] Cao L., Brouzos I., Zöllner S., Schmelcher P. // New J. Phys. 2011. Vol. 13. pp. 033032.

[28] Khadzhi P.I., Vasilieva O.F. // Journal of Nanoelectronics and Optoelectronics. 2011. Vol. 6. pp. 1–19.